Methamphetamine: Brain and Behavior: Research Findings Richard. A. Rawson, Ph.D. UCLA Integrated Substance Abuse Programs Los Angeles California Matrixex@ucla.edu www.uclaisap.org Missouri, May, 2004 Supported by National Institute on Drug Abuse and the Pacific Southwest Technology Transfer Center "Fire" is slang for Methamphetamine # Methamphetamines A Brief History 1887 Amphetamine developed 1919 Methamphetamine 1932 developed Amphetamine & methamphetamine used as decongestant # Methamphetamines A Brief History ■ WW II Extensive use by: - RAF fighter pilots - German Panzer troops - Japanese workers - Led to Kamikaze fever #### Methamphetamines A Post-War Epidemic - FACTORS - Large quantities - Disorganization - "Work pills" - 500,000 addicts - Reduced supply - Increased heroin # Methamphetamines Speed in Sweden - **FACTORS** - Large supply - 3% are users - Preludin widespread - Mostly oral use - "Speed clinics" - Clinics closed #### Methamphetamines A Previous U.S. Epidemic - FACTORS - More legal speed - Base is legal - **■** Easy to make - Large market - Many IV users - Law enforcement - Rural areas # Methamphetamines Factors Related to Epidemic - Over supply - Opportunity to experience - **■** Widespread knowledge - A reliable market - Non-parenteral methods - Many "speed labs" #### Bureau of Narcotics Enforcement Clandestine Lab Seizures *DEA still calculating statistics **CA statewide seizures, state and local combined SOURCE: www.stopdrugs.org/images/1999nationallabstat.jpg #### **ADAM SITES IN THE WEST** ### Percent of Male Arrestees testing positive for Methamphetamine | Albuquerque | 5.1 | |----------------|------| | Denver | 3.0 | | Las Vegas | 16.2 | | Los Angeles | 8.9 | | Phoenix | 16.6 | | Portland | 19.8 | | Sacramento | 27.6 | | Salt Lake City | 24.8 | | San Diego | 26.0 | | San Jose | 24.4 | | Seattle | 9.0 | | Spokane | 20.1 | | Tucson | 5.8 | #### **ADAM SITES IN THE WEST** ## Percent of Female Arrestees testing positive for Methamphetamine | Albuquerque | 8.9 | |----------------|------| | Denver | 2.4 | | Las Vegas | 17.9 | | Los Angeles | 12.0 | | Phoenix | 14.3 | | Portland | 24.8 | | Sacramento | 32.4 | | Salt Lake City | 34.1 | | San Diego | 36.3 | | San Jose | 31.6 | | Seattle | 9.5 | | Spokane | 26.6 | | Tucson | 9.6 | #### MIDWEST ADAM SITES ### Percent of Male Arrestees testing positive for Methamphetamine Cleveland 0.0 Chicago 0.0 Des Moines 14.0 Detroit 0.0 Indianapolis 0.6 Minneapolis 1.1 Omaha 7.8 #### MIDWEST ADAM SITES ## Percent of Female Arrestees testing positive for Methamphetamine | Cleveland | 0.0 | |-----------|-----| | Chiasas | | ---- Chicago _{0.0} Des Moines 22.4 Detroit 0.0 Indianapolis 0.5 Minneapolis 2.5 Omaha 11.1 ## Methamphetamine admissions per 100,000 population # Toxic Effects of Methamphetamine - Manufacturing - Abuse - Fetal exposure #### Clandestine Meth Lab #### Clandestine Meth Lab Equipment #### Meth Lab Seizures - A small percentage of labs seized are labeled "Super Labs" and are capable of producing over 10 lbs per batch. - Super Labs are operated by Mexican National Drug Trafficking Organizations (MNDTO's), and supply the majority of meth to the market. #### Lab Seizure Locations #### Lab Seizure Locations Most common meth lab facilities were single-family houses, followed by apartments, mobile homes, vehicles in traffic stops, garages, trailers, motels/hotels, businesses, desert, and storage. #### Stove top labs - Small, stove top labs comprise the bulk of clandestine laboratory seizures. - Cookers make small amounts using household chemicals and equipment. #### Stove Top Labs The active ingredient in making methamphetamine is ephedrine or pseudoephedrine, commonly found ir over the counter cold remedies. #### Chemical Ingredients - Trichloroethane (Gun Scrubber)Ether (Engine Starter) - Toluene (Brake Cleaner) - Methanol (Gasoline Additive) - Gasoline - Kerosene #### Chemical Ingredients - Lithium (Camera Batteries) - Anhydrous Ammonia (Farm Fertilizer) - Red Phosphorus (Matches) - lodine (Veterinarian Products) - Muriatic Acid - Campfire Fuel - Paint Thinner #### Chemical Ingredients - Acetone - Sulfuric Acid (Drain Cleaner) - Table Salt/Rock Salt - Sodium Hydroxide (Lye) - Sodium Metal (Can be made from Lye) - Alcohol (Rubbing/Gasoline Additive) #### Household Equipment - Coffee Filters - Rubber gloves - Tempered Glass Baking Dishes - Glass or Plastic Jugs - Bottles - Measuring Cup #### Household Equipment - Glass Jars - Funnels - Blender - Plastic Jugs - Tape - Turkey Baster - Clamps - Hotplate - Strainer #### Household Equipment - Rubber Tubing - Paper Towels - Gasoline Can - Plastic Tote Box - Aluminum Foil - Propane Cylinder (2) lb) - Books/internet (Meth lab Instruction) #### Toxicity - Detrimental effects of meth labs reach further than increase in drug supply. - For each quantity of methamphetamine manufactured, five times that amount is produced toxic wastes. - Due to illegal nature of meth production, these toxic wastes are not disposed of lawfully (including heavy metals and flammable chemicals like mercury and phosphorus that should be transported to hazardous waste facilities. #### Toxicity - Instead they are dumped into streams, rivers, fields, and sewage systems, and buried illegally, allowing the toxins to seep into groundwater. - This contaminates the environment and ground water, putting communities at risk. #### Toxicity Gases created during the manufacturing process permeate walls and carpets of houses and building making them uninhabitable. The cost of cleaning these sites ranges from \$2,000 to \$4,000 taxpayer dollars. - Fires - Explosions - Toxic gases - Toxic wastes - Cooking - hydrochloric acid - mixing / heating red phosphorous - straining sodium hydroxide - **■** Extraction - solvents - conversion to base - extracting - Salting - drying - Manufacturers - Law enforcement officers - Bystanders - Air (immediate vicinity) - Water supply - Soil # Organ Toxicity from MA Abuse - Central nervous system toxicity - Cardiovascular toxicity - Pulmonary toxicity - Renal toxicity - Hepatic toxicity # CNS Toxicity from MA Abuse - Acute psychosis - Chronic psychosis - Strokes - Seizures # Cardiovascular Toxicity from MA Abuse - Arrhythmic sudden death - Myocardial infarction - Cardiomyopathy # Pulmonary Toxicity from MA Abuse - Acute pulmonary congestion - Chronic obstructive lung disease # Renal / Hepatic Toxicity from MA Abuse - Renal failure - Hepatic failure ## Fetal Toxicity from MA Abuse - Early effects:fetal deathsmall for gestational age - Late effects:learning disabilitypoor social adjustment - Children who live in and around the area of the meth lab become exposed to the drug and its toxic precursors and byproducts. - 80-90% of children found in homes where there are meth labs test positive for exposure to meth. Some are as young as 19 months old. - Children can test positive for methamphetamine by: - Having inhaled fumes during the manufacturing process - Coming into direct contact with the drug - Through second-hand smoke. - Hundreds of children are neglected by parents who are meth cooks. Nationally, over 20% of the seized meth labs in 2002 had children present. - In Washington State, the counties of Grays Harbor, Spokane, Thurston, and Klickitat all reported that children were found at half the labs seized in 2002. In Lewis County, children were found at 60-70 %, and in Clark-Skamania, 35%. - In 2002, a total of 142 children were present at lab seizures in Riverside and San Bernardino Counties. - Most children reported as being present during a seizure were school age. - Social workers now accompany law enforcement during lab seizures with children involved. - Parents are often charged with seconddegree criminal mistreatment, along with manufacturing charges. - Allowing children to live in a toxic environment where additional risks of explosion and fire are high is considered to be neglect at best to child abuse. - Children have a greater skin surface area per pound than do adults, making them more susceptible to environmental contaminants. - They also eat, drink, and breathe faster, and are more likely to put hands and other objects in their mouths. Inquisitive nature of young children makes them more prone to accidentally consuming toxic chemicals that are sometimes kept in unmarked containers in the refrigerator. - Children are uniquely susceptible to neurological contamination in the environment because their brains are still developing. - Lead poisoning is an example of what the child is exposed to in these meth labs. A small amount of lead that may not affect an adult can cause neurological damage in a child. ## What *Does* Child Welfare Field Need in Context of Meth & Labs? - Support from Auxiliary Agencies and Departments - Policies that Protect their Safety - Policies that Appropriately Safeguard Children - Resources to Support Meth-dependent parents in treatment & recovery in the context of reunification efforts - Training for Caregivers and Treatment Staff to implement best practices for parents & kids # Drug Endangered Children: Who Should be Involved? - CHILD PROTECTIVE SERVICES (24/7) - MEDICAL & PUBLIC HEALTH PERSONNEL (24/7) - LAW ENFORCEMENT (24/7) (If Lab) - DISTRICT ATTORNEY'S OFFICE (24/7) (If Lab) - (CORE DEC RESPONSE TEAM MEMBERS) #### **ADDITIONAL INVOLVEMENT FROM:** - MENTAL HEALTH & THERAPEUTIC PERSONNEL - CHILD CARE PROVIDERS: FOSTER FAMILIES - DRUG & ALCOHOL TREATMENT PROVIDERS - ENVIRONMENTAL SERVICES & HAZARDOUS MATERIALS TEAM PERSONNEL (If Lab) # Drug Endangered Children Response Teams Why the Team Concept Is Needed and Works... - Multi-Need Families; Multi-Need Individuals - Multi-Disciplinary Approach - Spirit of Cooperation - Sharing of Information - Case Coordination for Best Family and Individual Outcome ### Striatal FDOPA Activity Pre-Amphetamine/Control Post-Chronic Amphetamine (10 days) 4 weeks 6 months 1 year 2 years Superior Inferior # Brain metabolism in newly abstinent methamphetamine users - Edythe London - Walter Ling - Richard Rawson **UCLA School of Medicine** # Triggers and Cravings *Human Brain* # **Cognitive Process During Addiction** Introductory Phase # **Conditioning Process During Addiction** Introductory Phase ### **Strength of Conditioned Connection** ### **Triggers** - Parties - Special Occasions #### Mild #### Responses - •Pleasant Thoughts about AOD - •No Physiological Response - •Infrequent Use ## Development of Obsessive Thinking Introductory Phase # Development of Craving Response ### Introductory Phase **Entering Using Site** **Use of AODs** #### **AOD Effects** - **1** Heart/Pulse Rate - **1** Respiration - **1** Adrenaline - **1** Energy - **Taste** # Cognitive Process During Addiction Maintenance Phase # **Conditioning Process During Addiction** ### Maintenance Phase ### **Strength of Conditioned Connection** #### **Triggers** - Parties - Friday Nights - Friends - Concerts - •Alcohol - •"Good Times" - Sexual Situations #### **Moderate** #### **Responses** - Thoughts of AOD - •Eager Anticipation of AOD Use - •Mild Physiological Arousal - •Cravings Occur as Use Approaches - Occasional Use # Development of Obsessive Thinking Maintenance Phase # Development of Craving Response Maintenance Phase **Entering** Physiological Response Use of AODs AOD Effects - † Heart - † Breathing - † Adrenaline Effects - † Energy Taste **‡** Heart Blood Pressure **1** Energy ### Cognitive Process During Addiction Disenchantment Phase **Social Currency Nose Bleeds Occasional Euphoria Infections Relief From Lethargy Relationship Disruption Relief From Stress Family Distress Impending Job Loss** ### **Conditioning Process During Addiction** #### Disenchantment Phase #### **Strength of Conditioned Connection** #### **Triggers** - Weekends - All Friends - Stress - •Boredom - Anxiety - After Work - Loneliness #### **Responses** - •Continual Thoughts of AOD - •Strong Physiological Arousal - Psychological Dependency - Strong Cravings - •Frequent Use # Development of Obsessive Thinking Disenchantment Phase # Development of Craving Response Disenchantment Phase # Thinking of Using #### Mild Physiological Response - † Heart Rate - † Breathing Rate - **†** Energy - **† Adrenaline Effects** #### **Entering Using Site** #### **AOD Effects** #### Powerful Physiological Response - † Heart Rate - † Breathing Rate - † Energy - **† Adrenaline Effects** #### **Use of AODs** - **‡** Heart - **1 Blood Pressure** - **1** Energy ### Cognitive Process During Addiction Disaster Phase ### **Conditioning Process During Addiction** Disaster Phase **Strength of Conditioned Connection** #### **OVERPOWERING** #### **Triggers** - Any Emotion - Day - •Night - •Work - •Non-Work #### **Responses** - •Obsessive Thoughts About AOD - •Powerful Autonomic Response - Powerful Physiological Dependence - Automatic Use # Development of Obsessive Thinking Disaster Phase # Development of Craving Response Disaster Phase ### Roadmap for Recovery Protracted Abstinence # Memory Difference between Stimulant and Comparison Groups # Differences between Stimulant and Comparison Groups on tests requiring perceptual speed ### Summary - Actively using MA addicts demonstrate impairments in: - the ability to manipulate information - the ability to make inferences - the ability to ignore irrelevant information - the ability to learn - the ability to recall material # Longitudinal Memory Performance ### Summary (cont.) - Some deficits are resolved after a period of 12-weeks of abstinence: - The ability to ignore irrelevant information - The ability to manipulate information ### Summary (cont.) - Some abilities get worse in the early periods of abstinence: - Recall and recognition both show more impairment at 12 weeks of nonuse - than is evident in current users ### Methamphetamine Acute Physical Effects - Increases Heart rate **Blood pressure** Pupil size time Respiration Sensory acuity Energy -Decreases **Appetite** Sleep Reaction ### Methamphetamine Acute Psychological Effects - Increases - Confidence - Alertness - Mood - Sex drive - Energy - **■** Talkativeness - Decreases - Boredom - Loneliness - **■** Timidity ### Methamphetamine Chronic Physical Effects - Tremor - Weakness - Dry mouth - Weight loss - Cough - Sinus infection - Sweating - Burned lips; sore nose - Oily skin/complexion - Headaches - Diarrhea - Anorexia ### Methamphetamine Chronic Psychological Effects - Confusion - Concentration - Hallucinations - Fatigue - Memory loss - Insomnia - Irritability - Paranoia - Panic reactions - Depression - Anger - Psychosis ### Methamphetamine Psychiatric Consequences - Paranoid reactions - Permanent memory loss - Depressive reactions - Hallucinations - Psychotic reactions - Panic disorders - Rapid addiction ### Typical Day of MA Use Amount -- 1 gram Route -- Smoke First Use -- "When I wake up" Other uses -- "Every few hours" Amount each use -- 1/5 gram ### Typical Day of MA Use Amount -- 3/4 gram Route -- Shoot First Use -- "When I get up" Other uses -- "Noon and Afternoon" Amount each use -- 1/4 gram #### MA Treatment Issues - Acute MA Overdose - Acute MA Psychosis - MA "Withdrawal" - Initiating MA Abstinence - MA Relapse Prevention - Protracted Cognitive Impairment and Symptoms of Paranoia #### Acute MA Overdose - Slowing of Cardiac Conduction - Ventricular Irritability - Hypertensive Episode - Hyperpyrexic Episode - CNS Seizures and Anoxia #### Acute MA Psychosis - Extreme Paranoid Ideation - Well Formed Delusions - Hypersensitivity to Environmental Stimuli - Stereotyped Behavior "Tweaking" - Panic, Extreme Fearfulness - High Potential for Violence #### Treatment of MA Psychosis - Typical ER Protocol for MA Psychosis - Haloperidol 5mg - Clonazepam 1 mg - Cogentin 1 mg - Quiet, Dimly Lit Room - **■** Restraints #### MA "Withdrawal" - Depression - Fatigue - Anxiety - Anergia - Paranoia - Cognitive Impairment - Agitation - Confusion ■ Duration: 2 Days - 2 Weeks # Treatment of MA "Withdrawal" - Hospitalization/Residential Supervision if: - Danger to Self or Others, or, so Cognitively Impaired as to be Incapable of Safely Traveling to and from Clinic. - **■** Otherwise Intensive Outpatient Treatment # Treatment of MA "Withdrawal" - **■** Intensive Outpatient Treatment - No Pharmacotherapy Available - **■** Positive, Reassuring Context - **■** Directive, Behavioral Intervention - Educate Regarding Time Course of Symptom Remission - Recommend Sleep and Nutrition - Low Stimulation - Acknowledge Paranoia, Depression #### Initiating MA Abstinence - Key Clinical Issues - Depression - **■** Cognitive Impairment - Continuing Paranoia - Anhedonia - Behavioral/Functional Impairment - Hypersexuality - Conditioned Cues - Irritability/Violence #### Initiating MA Abstinence - Key Elements of Treatment - **■** Structure - Information in Understandable Form - **■** Family Support - **■** Positive Reinforcement - 12-Step Participation - No Pharmacologic Agent Currently Available #### Treatment of MA Disorders - Traditional Treatments - **■** Therapeutic Community - Minnesota Model - Outpatient Counseling - Psychotherapy #### Treatment of MA Disorders - **State of Empirical Evidence** - No Information on TC or "Minnesota Model" Approaches - No Pharmacotherapy with Demonstrated Efficacy - Results of Cocaine Treatment Research Extrapolated to MA Treatment ### A Multi-Site Comparison of Psychosocial Approaches for the Treatment of Methamphetamine Dependence Richard A. Rawson, Ph.D. and The Methamphetamine Treatment Project Corporate Authors* Addiction (2004, In Press) ### **Project Goals:** - To study the clinical effectiveness of the Matrix Model - To compare the effectiveness of the Matrix model to other locally available outpatient treatments - To establish the cost and cost effectiveness of the Matrix model compared to other outpatient treatments - To explore the replicability of the Matrix model and challenges involved in technology transfer ### **Matrix Model** # An Integrated, Empirically-based, Manualized Treatment Program Cognitive Behavioral Therapy Family and Group Therapy Motivational Interviewing 12- Step Involvement **Psychoeducation** Social Support # Manuals in Psychosocial Treatment - Reduce therapist differences - Ensure uniform set of services - Can more easily be evaluated - Enhance training capabilities - Facilitate research to practice - Program components based upon scientific literature on promotion of behavior change. - Program elements and schedule selected based on empirical support in literature and application. - Program focus is on current behavior change in the present and not underlying "causes" or presumed "psychopathology". - Matrix "treatment" is a process of "coaching", educating, supporting and reinforcing positive behavior change. - Non-judgemental, non-confrontational relationship between therapist and patient creates positive bond which promotes program participation. - Therapist as a "coach" - Positive reinforcement used extensively to promote treatment engagement and retention. - Verbal praise, group support and encouragement other incentives and reinforcers. - Accurate, understandable, scientific information used to educate patient and family members - Effects of drugs and alcohol - Addiction as a "brain disease" - Critical issues in "recovering" from addiction - Behavioral strategies used to promote cessation of drug use and behavior change - Scheduling time to create "structure" - Educating and reinforcing abstinence from all drugs and alcohol - Promoting and reinforcing participation in nondrug-related activities - Cognitive-Behavioral strategies used to promote cessation of drug use and prevention of relapse. - Teaching the avoidance of "high risk" situations - Educating about "triggers" and "craving" - Training in "thought stopping" technique - Teaching about the "abstinence violation effect" - Reinforcing application of principles with verbal praise by therapist and peers - Involvement of family members to support recovery. - Encourage participation in self-help meetings - Urine testing to monitor drug use and reinforce abstinence - Social support activities to maintain abstinence ### **Elements of the Matrix Model** - Engagement/Retention - Structure - Information - Relapse Prevention - Family Involvement - Self Help Involvement - Urinalysis/Breath Testing ## The Matrix Model | Monday | Wednesday | Friday | |-----------------------|------------------|--------------------------| | Early Recovery Skills | Family/education | Early Recovery
Skills | | Weeks1-4 | Weeks 1-12 | Weeks1-4 | | Relapse Prevention | Social Support | Relapse Prevention | | Weeks 1-16 | Weeks 13-16 | Weeks 1-16 | Urine or breath alcohol tests once per week, weeks 1-16 Table 1. Sites participating in the MTP (from Herrell et al, 2000) | Coordinating Center | Principal Investigators | Directors | | |--|---|--|--| | University of California at
Los Angeles (UCLA)
Integrated Substance
Abuse Programs (ISAP) | M. Douglas Anglin, Ph.D.
Richard A. Rawson, Ph.D. | Patricia Marinelli-Casey, Ph.D.,
Project Director
Jeanne Obert, MFT, Clinical
Alice Huber, Ph.D. Research
Chris Reiber, Ph.D. Statistics | | | Grantee / Site* | Principal Investigator | Lead Evaluator | | | County of San Mateo,
Belmont, CA:
Two sites: ODASA and
Pyramid | Yvonne Frazier, Ph.D.
County of San Mateo, Alcohol and
Drug Services; Belmont, CA | Joseph Guydish, Ph.D.
University of California at San
Francisco; San Francisco, CA | | | East Bay Community
Recovery Project,
Hayward, CA | Joan Zweben, Ph.D.
East Bay Community Recovery
Project; Hayward, CA | Judith Cohen, Ph.D., M.P.H.
East Bay Community Recovery
Project; Hayward, CA | | | Matrix Center, Costa
Mesa, CA | Michael McCann, M.A.
Matrix Center; Costa Mesa, CA | Vikas Gulati, B.S.
Matrix Center; Costa Mesa, CA | | | New Leaf Treatment
Center, Lafayette, CA | Gantt Galloway, Pharm.D. New Leaf Treatment Center; Lafayette, CA | Janice Stalcup, Ph.D.
New Leaf Treatment Center;
Lafayette, CA | | | San Diego Association of
Governments, San
Diego, CA | Susan Pennell, M.A. San Diego Association of Governments; San Diego, CA | Cynthia Burke, Ph.D. San Diego Association of Governments; San Diego, CA | | | South Central Regional
Mental Health Center,
Billings, MT | Denna Vandersloot, B.S.
South Central Regional Mental
Health Center; Billings, MT | Russell H. Lord, Ph.D.
Montana State University; Billings
MT | | | St. Francis Medical A
Center, Honolulu, HI | lice Dickow, B.A. St. Francis Women's Addiction Treatment Center, Hawaii; Honolulu, HI | Ewa Stamper, Ph.D. St. Francis Women's Addiction Treatment Center, Hawaii; Honolulu, HI | | #### Table 4. MTP Participant Characteristics (taken from baseline ASI) | Characteristic | Summary | | |---|-------------|--| | % Male | 45 | | | Age (Yrs.), mean (sd) | 32.8 (8.0) | | | Ethnicity (%) | | | | Caucasian | 60 | | | African-American | 2 | | | American Indian | 3 | | | Asian/Pacific Islander | 17 | | | Hispanic | 18 | | | Educational Attainment Level (yrs.), mean (sd) | 12.2 (1.7) | | | % Employed | 69 | | | % Married (and not separated) | 16 | | | Overall Substance Use Patterns-Lifetime (yrs.), mean (sd) | | | | Methamphetamine | 7.54 (6) | | | Alcohol | 7.6 (8.5) | | | Cocaine | 1.75 (3.5) | | | Cannabis | 7.15 (8) | | | Overall Substance Use Patterns—Days in Past 30, mean (sd) | | | | Methamphetamine | 11.53 (9.6) | | | Alcohol | 4.72 (7.3) | | | Cocaine | 0.21 (1) | | | Cannabis | 4.38 (8.3) | | | Preferred Route of Administration of MA (%) | | | | Oral | 0 | | | Nasal | 11 | | | Smoked | 65 | | | IV- injection | 24 | | Table 7. Comparison of retention between groups within sites, with Matrix truncated to the length of TAU at each site | Site | TAU length (wks.) | Log-rank | Chi-square | р | |--------|-------------------|----------|------------|---------| | Site 1 | 8 | -20.07 | 33.17 | <0.0001 | | Site 2 | 12 | -9.49 | 4.98 | 0.026 | | Site 3 | 12 | -8.39 | 3.68 | 0.055 | | Site 4 | 16 | 1.64 | 0.26 | 0.610 | | Site 5 | 12 | -22.30 | 28.74 | <0.0001 | | Site 6 | 12 | -17.46 | 17.87 | <0.0001 | | Site 7 | 16 | -5.01 | 3.34 | 0.067 | | Site 8 | 12 | -10.59 | 7.99 | 0.005 | Figure 3. Participant retention throughout treatment, by site and treatment group Figure 4. Percent completing treatment, by group | | Matrix 16 | TAU | |---------------|-----------|-------| | Completer | 40.85 | 34.16 | | Not Completer | 59.15 | 65.84 | $$x^2=4.68, p=0.031$$ Figure 6. Participant self-report of MA use (number of days during the past 30) at enrollment, discharge, and 6-month follow-up, by treatment condition